
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS                                                 Vol. 23, No. 5-6, May – June 2021, p. 216 - 221  

 

Analytic calculation for the binding energy of an  

on-center donor impurity in core/shell/shell  

quantum dot 
 
M. EL KHOU*, EL ALAMI IBNOUELGHAZI, D. ABOUELAOUALIM 

LN2E, Department of Physics, Faculty of Sciences Semlalia, Cadi Ayaad University, Marrakesh, Morocco 
 

 

 
In this study, we present a general analytic solution for any system describing a Core/Shell/Shell Quantum Dot or briefly 
CSSQD with and without an on-center donor impurity using only one solution wave function build by a linear combination of 
the Whittaker functions. In the framework of the effective mass approximation, in the conduction band, we apply this general 
solution wave function on a special case, ZnS/HgS/ZnS multi-shell quantum dot in order to calculate the confinement 
energy and binding energy for the ground state and several other excited state as well as the probability densities, the 
results show that the general solution does matches with the reference solutions given by the spherical Bessel function for 
the impurity-less case, and agrees with the results when the energy is positive when the impurity is present, which are given 
by the coulomb functions. 
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1. Introduction 
 

The recent developments in the manufacturing and 

growth technology allowed us to fabricate low 

dimensional systems such as the zero dimensional 

Quantum Dots, which restrict the motion of the charge 

carriers in all three dimensions. They have been widely 

utilized for electronic devices due to the fact they can be 

processed using cost-effective solution-based methods 

such as spin coating or contact printing [1], as well as their 

unique electrical and optical properties which can be 

precisely controlled by adjusting their overall size and 

thickness [2–6]. 

Nanocrystals with more than one material, like 

core/shell quantum dots, enjoy some interesting perks as 

they offer more parameters to tweak on in order to 

maximize their electrical and optical properties such as 

quantum yield [7], they can be synthesized in high-boiling 

organic solvents, like CdSe/ZnS [8] and CdSe/CdS [9]. 

Multilayered QD has been studied theoretically by many 

researchers [10], their electronic properties under some 

different physical effects have been reported in the 

literature [11–13].  

The study of the impurity states in semiconductor 

nanostructures was initiated only in early 1980s through 

the pioneering work of Bastard [14]. The confinement in 

all three dimensions in QDs causes a reduction of the 

distance between the electron and the impurity leading an 

increase in the Coulomb interaction. Bose et al. [15–18] 

obtained the binding energy of a shallow hydrogenic 

impurity in spherical QDs. As the interest of impurity 

doping in nanocrystallites grows, much theoretical works 

have been carried out on donors in multi-shell QDs 

employing different methods [19–25], as they study the 

effect of impurity on the energy spectra in multi-shell 

nanostructures. 

Our main motivation in this work is to find a simple 

but general wave function solution that is capable of 

describing simultaneously a Multi-Shell Quantum dot with 

and without an on-center impurity, no matter what the 

energy is compared to the barrier potentials of each layer, 

then apply the general wave function solution on a 

ZnS/HgS/ZnS core/shell/shell quantum dot to study the 

binding energy of the confined electron.  

 
 
2. Theoretical framework 
 

We present in this study an electron confined in an 

isolated multi-shell quantum dot with inner radii R1, the 

first layer thickness Δ1 and the second layer thickness Δ2 

as shown in Fig. 1. 

 

 
 

Fig. 1. Cross section of a multi-shell quantum dot 
Such a system can be described by solving the time 

independent Schrodinger equation with a position 
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dependent effective mass which has the form given by 

BenDaniel and Duke [26] as follows: 
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where the first term is the kinetic energy operator for a 

position dependent effective mass, V(r) is the confining 

potential, which binds the electron in a specific region 

accordingly and E is the total energy Eigen value. 

We can write the CSS potential V(r) function with the 

on-center donor impurity included as a point wise function 

as follows:  
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And the effective mass is defined in the same manner 

as: 
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We can solve Eq. (1) by performing a separation of 

variables, as follows: 

 

      r̂YrRr̂,r lmnlnlm   (4) 

 

This solution allow us to uncouple the three 

dimensional Schrödinger equation to a simple one 

dimensional problem, dependent only on the radial 

component, since the potential used here doesn’t break any 

spherical symmetry, which means the Hamiltonian is 

invariant under rotation, we proceed by computing the 

energy Eigen states by solving the radial dependent 

Schrödinger equation, for each layer, we get three coupled 

differential equations, which contain a regular singular 

point at r = 0 due to the spherical symmetry, as a result the 

core wave function will have a singular solution which 

will be omitted since it have no physical meaning. 
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Solving Eq. (5) for the core and both shells require 

three separate wave functions, which need to be linked 

together by BenDaniel and Duke boundary conditions 

[26], the functions are given as follows: 
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where A1, A2, A3, B2, B3 are normalization constants, the 

next step is to apply the BenDaniel and Duke boundary 

conditions on  rc ,  rs  and  rss  as follows: 
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We get after some tedious simplifications a function 

that host all the properties of the problem and depend on 

the energy, the energy Eigen values are zeros of this 

function, it is written as follows:  
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where we define 3 , 3
~ , 3 , 2 , 2

~ , 1 and 1
~ as 

follows: 
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All the capital letters functions are first order 

derivative as shown below: 
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To compute the analytical electron's energy levels we 

need to solve this transcendental equation where the 

energy E is the unknown: 

 

    0EGRe   (17) 

 

The wave function normalization constants are as 

follows: 
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One normalization constant 1A  still remains 

unidentified, which can be found by applying the 

normalization condition as follows: 
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We can see that the transcendental equation (17) 

depend only on the set of functions  rf i
j  which in return 

depend directly on the potential  rV , when successfully 

solved, we'll be able to obtain all the energy levels of the 

electron confined in the quantum dot, this procedure gives 

us a big advantage if we'd like to add more shells to our 

quantum dot, as we only need to find its corresponding 

linkage function  EG  and add more functions which we 

already have.  

Consider we have a spherical multi-shell quantum dot 

with and without an impurity at its center; the quintuplet 

solution functions for all energies are given by: 
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where  rM ,n   and  rW ,n   are the two linearly 

independent Whittaker functions, while ia  and ik  are 

respectively the Bohr radius and wave vector respectively 

for the core and the shells, defined as: 
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The general solution (20) is capable of covering both 

cases where the donor impurity at the center is in effect 

(Z=1) and the other case where it's absent (Z=0), moreover 

for any value of the energy E compared to Vi without the 

need to use any other complicated functions such as the 

Confluent Hypergeometric function or the Coulomb 

function [27–29]. However there is an important condition 

to fulfill when the impurity is absent, we have to make Z 

so close but not entirely equal to zero, in this simulation 

we take Z=5×10-18 as it give us accurate results compared 

to the reference solutions where we usually use the 

spherical Bessel functions, we get an energy difference in 

the vicinity of ΔE≈10-16eV. It is also important to take 

cautious from other unwanted zeros of the transcendental 

equation (17) that sometimes emerges so close to the 

wanted result in some extreme scenarios when the value of 

the electron's energy is in the neighborhood of the barrier 

potentials (E ≈ V1,V2 and V3) or in some extreme condition 

when a layer width is chosen extremely small compare to 

the others, which can make finding the proper eigenvalue a 

little bit challenging, however this issue can be solved 

sometimes by looking at the probability density. 

The Binding energy can be calculated as the 

expectation value of the donor impurity potential using the 

solution wave function in Eq. (4), or simply by using this 

formula: 
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Fig. 2. ZnS/HgS/ZnS CSS Quantum dot potential  

with the impurity at the center 

 

Now let's apply the general solution (20) to a special 

case, ZnS/HgS/ZnS CSSQD, with a specific potential as 

shown in Fig. 2. And compute the electron's confinement 
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energy as well as its binding energy for different core radii 

R1 and shells thicknesses. 
 
 
3. Results and discussion 
 

In this section, we will apply the general solution to a 

ZnS/HgS/ZnS multi-shell quantum dot, in order to 

compute the variation of the confinement energy for the 

ground state (1s) and other excited states with the 

influence of a donor impurity at the center, then we deduce 

their corresponding binding energy using Eq. (21), trying 

various cases of the core radii R1, first thickness Δ1 and 

second thickness Δ2 in order to test the consistency of the 

solution for geometric adjustment, and finally we plot the 

probability densities. For this purpose we take the 

confinement potential in the first shell as Energy 

reference, making it equal V2=0eV since the bottom of the 

conduction band is located in HgS in comparison with ZnS 

which is much higher, while the core and the second shell 

are eV65.2VV 31  [30,31], for the effective mass of the 

electron in the conduction band we have 

0
*
2 m04.0m  [30] for HgS and 0

*
3

*
1 m28.0mm  [32] 

for ZnS, where m0 is the free electron mass, as for the 

dielectric constant we have ε2=11.4ε0 [30] for HgS, while 

ε1=8.9ε0 [32] for ZnS, where ε0 is the vacuum permittivity. 

 

 
(a) 

 
(b) 

Fig. 3. Variation of electron's confinement energy as a 

function of HgS thickness Δ1 for R3=5 nm (color online) 

 

We begin our discussion by looking at Fig. 3 as it 

illustrate the variation of the confinement ground state 

energy (1s) and multiple other excited states with respect 

to HgS thickness Δ1, in a fixed size quantum dot R3= 5 

nm, all sharing the same principal quantum number (n=1) 

in Fig. 3a and (n=2) in Fig. 3b, while making the core radii 

and the outer thickness vary equally R1 =Δ2, as we vary 

the HgS layer thickness Δ1 from zero to 5 nm, we observe 

a noticeable decrease in the confinement energy especially 

for the (1s) state, this effect is simply a result of the 

decrease of the magnitude of the probability density at the 

center of the QD, as the thickness of HgS rises, more 

suitable states emerges with less spatial restrictions, as the 

opposite to the surrounding material ZnS which is growing 

slimmer with less states for the electron to occupy, this is 

also true when we make (n=2) as shown in Fig. 3b, we see 

a different energy variation behavior for the three lowest 

states (2s), (2p) and (2d) as we increase thickness Δ1, from 

0 to approximately 1.9 nm the confinement energy 

experience a slight change, then decrease noticeably until 

around 4.6 nm as we observe once again a rising in the 

confinement energy, for the (2f) state we see that the 

confinement energy increase until HgS thickness reaches 

Δ1=3.1 nm, since part of the probability density still 

remain in the ZnS core and outer shell  where the 

confinement is getting high, then the energy get low as this 

remaining of the probability density in ZnS material 

completely travel to HgS which is getting quite wide in 

comparison. 

 
(a) 

 
(b) 

Fig. 4. Variation the binding energy as a function of the 

core radii R1 for a fixed HgS thickness of (a) Δ1= 1 nm 

and (b) Δ1= 2 nm in a R3= 5 nm (color online) 
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In Fig. 4 we have the variation of the binding energy 

for several electronic states with (n=1) for a fixed HgS 

thickness Δ1 and outer radius R3=5nm, while we vary the 

core radii R1 from 0 to R3−Δ1. Fig. 4a shows the case 

where we choose Δ1= 1 nm, as the core radii R1 increases, 

the binding energy decreases since the probability density 

moves away from the center as it mostly located within 

HgS layer, until we reach approximately Δ2= 0.1 nm 

where the binding energy suddenly increases, which can 

be explained by the fact that the probability density spread 

back to the center once again. We see a different pattern 

when  is non null, as we observe an increase followed by 

a decrease while reaching a maximum value which is well 

visible for the (2p) and (2d) when we’re in high 

confinement Δ1= 1 nm. When we loosen up the thickness 

of HgS to Δ1= 2 nm, we see a similar variation as before 

however with a lower energy and less defined bumps. 

 

 
(a) 

 
(b) 

 

Fig. 5. Variation of the binding energy for the ground 

state and several excited state (a) as a function of HgS 

thickness Δ1 while fixing R3=5 nm (color online) 
 

Fig. 5 shows us the effect of varying the HgS 

thickness Δ1 on the binding energy for multiple states in a 

fixed total radius R3= 5 nm, at Δ1=0nm we have a quantum 

dot with only ZnS molecules, as we increase Δ1 gradually 

which introduce HgS particles from the R3/2, we observe a 

sharp decrease in the (1s) state binding energy which is 

accompanied with a fast probability density decrease at the 

center of the quantum dot, followed by an energy 

stabilization at approximately 51 meV starting from  Δ1=1 

nm until 4.5 nm where the probability density decrease 

and spread with a steady rate, finally we see that the 

binding energy rises toward the end as the probability 

density increases once again at the center to match the case 

of a ZnS quantum dot with no HgS included. For the (2s) 

state, we observe a noticeable increase of the binding 

energy summiting at 190.2 meV around Δ1= 1.22 nm, 

followed by a decrease to a minimum of 68 meV at 2.75 

nm the increases with a steady rate until we have a 

complete HgS quantum dot, for states with  different than 

zero, we see a similar behavior for all three states (1p), 

(1d) and (1f) as the binding energy increases to a 

maximum value then decreases until HgS thickness 

reaches 4.6 nm where it rises up again as the probability 

density matches up with a quantum dot with only one 

material. We see the same thing occur for (2p), (2d) and 

(2f) states, as they seem to share the same pattern for the 

binding energy, we focus here on the (2p) state as we 

observe an even sharper decrease when we increase Δ1 

gradually until it reaches the global minimum at Δ1=1nm 

at 42.8 meV then we see an increases in the binding 

energy to a local maximum of 66.4 meV at Δ1=2.2nm, and 

then we see a steady slow rate decrease in the binding 

energy until a local minimum with the value of 55.2 meV 

at Δ1=4.7nm and increase for the remaining of the curve. 

  

 
(a) 

 
(b) 

 

Fig. 6. Probability density in a ZnS/HgS/ZnS CSS 

Quantum Dot under the influence of an on-center 

impurity (Z=1) (color onine) 
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In Fig. 6 we present the electron’s probability density 

for multiple confinement states in a ZnS/HgS/ZnS 

quantum dot with a hydrogenic donor impurity at the 

center, for a fixed thickness layout (R1= 1.0nm, Δ1= 

1.0nm, Δ2=1.0nm), we observe that for the lowest state 

energy, the (1s) and (1p) states probability density are 

situated inside HgS, since their energy is less than the 

band offset potential 2.65eV, which host the states with 

the lowest energy possible, while (1d) state is slightly  

higher with 2.74eV, which is enough energy to make a 

transition from HgS to the outer ZnS. 

 
 
4. Conclusion 
 

In this study, we give a general analytic solution to the 

Schrödinger equations describing a spherical 

Core/Shell/Shell Quantum dot with and without the 

influence of an on-center donor impurity, using only one 

general wave function solution realized using the 

Whittaker functions. We apply the solution obtained to 

compute the electronic properties of an electron confined 

in the ZnS/HgS/ZnS multi-shell quantum dot, we have 

shown the effect of varying the inner radiis of the multi-

shell quantum dot layers on the electronic properties. We 

observed that the results stayed consistent throughout the 

simulation for any care radii R1 or inner and outer shell 

thickness, for both cases when the donor impurity is absent 

(Z=0) and present (Z=1), the solution was also tested for 

other effective mass and offset potential configurations, 

and both results matches. 
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